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In this work, a mixed Eulerian—Lagrangian algorithm, called ELAFINT
(Eulerian Lagrangian algorithm for interface tracking) is developed further
and applied to compute flows with solid—fluid and fluid—fluid interfaces. The
method is capable of handling fluid flows in the presence of both irregularly
shaped solid boundaries and moving boundaries on a fixed Cartesian grid.
The field equations are solved on the underlying fixed grid using a collocated
variable, pressure-based formulation. The moving boundary is tracked explic-
itly by the Lagrangian translation of marker particles. The moving boundary
passes through the grid and the immersed boundary technique is used to
handle its interaction with the underlying grid. The internal solid boundaries
are dealt with by using a cut-cell technique. Particular attention is directed
toward conservation and consistency in the vicinity of both phase boundaries.
The complex geometry feature has been tested for a variety of flow problems.
The performance of the immersed boundary representation is demonstrated
in the simulation of Newtonian liquid drops. The combination of the two
features is then employed in the simulation of motion of drops through
constricted tubes. The capabilities developed here can be useful for solving
flow problems involving moving and stationary complex boundaries. © 1997

Academic Press

1. INTRODUCTION

The challenges posed by fluid flow problems involving moving boundaries have
resulted in a variety of computational techniques directed toward their solution
(Shyy et al. [1]). The moving boundaries may represent material discontinuities in
the flowfield, and their dynamics is coupled with that of the flow. Numerical methods
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applied to such problems are required to follow the evolution of the complex shapes
often assumed by the moving boundaries. To tackle these evolving interfaces, as a
natural extension of adaptive grid methods for stationary complex geometries,
algorithms based on body-fitted coordinates have been applied to moving boundary
problems (Kang and Leal [2], Glimm et al. [3]). A boundary-conforming grid
arrangement is convenient and accurate; the discontinuity is always maintained and
interfacial conditions are applied at the exact locations without any smearing or
redistribution. However, when the interface deformation becomes large, it is difficult
to adequately resolve the geometrical complexities while maintaining desired mesh
control. Mesh skewness and stretching may impact negatively on accuracy and
efficiency of the flow solver. The boundary-fitted grid method presents further
difficulties when interfaces merge or fragment.

In simulating multiphase phenomena involving highly deformed interface shapes,
purely Eulerian methods (Osher and Sethian [4], Kothe and Mjolsness [5], Sussman
et al. [6], Chang et al. [44], Hou et al. [45]) have come to be widely used. In such
methods, a fixed Cartesian grid is usually used, so problems associated with grid
generation are circumvented. Eulerian methods based on the volume of fluid (Hirt
and Nichols [7]) or level-set (Osher and Sethian [4], Sethian [8], Chang et al. [44],
Hou et al. [45]) are popular methods to handle free-surface flows, such as wave-
breaking, sloshing, and splashing type problems. In purely Eulerian methods, the
details of the interface shape are not explicitly available, since the interface is
deduced based on a computed field variable. The interface information needs to
be obtained from an appropriate computed field variable in order to describe the
details of the interface shape and curvature. An accurate estimation of the interface
curvature is very important when capillarity plays a significant role in the interfacial
physics. In tracking highly distorted interfaces with good accuracy, a combination
of the strengths of Eulerian and Lagrangian methods has been shown to be useful.
This mixed Eulerian-Lagrangian approach has been used in recent years for prob-
lems involving fluid—fluid (Unverdi and Tryggvason [9], Nobari et al. [10]) as well
as solid-liquid interactions (Shyy et al. [1], Udaykumar and Shyy [11], Udaykumar
et al. [12], Juric and Tryggvason [13]). These methods employ fixed structured grids
and afford simplicity and availability of well-tested flow solvers. The only moving
component is the interface which is a lower-dimensional surface overlying the fixed
grid and is explicitly tracked.

One limitation of the methods based on fixed grids is that since they have tradition-
ally employed Cartesian grids, complex flow geometries are difficult to incorporate.
A complex geometry facility would be useful in studying the interaction of the
moving boundary with flows in arbitrary domains. The representation of a solid
boundary on a fixed Cartesian grid layout calls for special treatment, since the
control volumes through which the irregular boundary passes become fragmented
into solid and liquid regions. This situation is illustrated in Fig. 1. Quirk [14] detailed
some of the procedures involved in dealing with cell fragments or cut cells in the
framework of compressible, inviscid flows around stationary obstacles. However,
the calculation of fluxes is not presented in detail in that work. Also in connection
with compressible, inviscid flows, Pember et al. [15] use local refinement and a
redistribution procedure to enforce conservation in the vicinity of the solid—fluid
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FIG. 1. TIllustrations of (a) the situation when a solid object is represented on a Cartesian grid,
(b) a typical control volume encountered in the vicinity of the solid-liquid interface (interfacial cell).

boundary. Arbitrary-shaped boundaries running through a Cartesian mesh have
also been dealt with using finite element methods by Young et al. [16]. In Zeeuw
and Powell [17] and Bayyuk et al. [18], a Cartesian grid is employed to track the
motion of solid objects through an inviscid compressible fluid. Goldstein et al
[19, 20] have employed a modified immersed boundary technique (Peskin [21]) to
impose no-slip boundary conditions over arbitrary-shaped solid boundaries. This
facility has been found useful in going beyond simple geometries, an important
consideration for the spectral methods in use therein. Turbulent flows around solid
obstacles have been calculated using this approach and the results have been shown
to compare favorably with experiment. The method, as used in these works, treats
the solid boundary as a series of steps conforming with the Cartesian grid layout,
i.e., in piecewise constant fashion. In contrast, a piecewise linear representation of
the free surface was used by Miyata [22] for the simulation of wave breaking; the
calculations were performed on a Cartesian grid using a finite difference technique.
In a finite volume setting, Udaykumar and Shyy [23] used a cut-cell technique to
compute incompressible, viscous flows in arbitrary geometries. In that work, it was
demonstrated that by means of a suitably defined consistent mosaic of control
volumes, it is possible to obtain accurate solutions for flows on Cartesian meshes.
However, the staggered variable layout in Udaykumar and Shyy [23] rendered the
measures adopted to handle the internal boundaries rather tedious. Here, we present
afixed grid methodology for the simulation of flow through complex geometries with
moving two-fluid boundaries, simplified considerably by the choice of a collocated
variable layout (Lien and Leschziner [24]). The performance of the flow solver in
terms of stability and accuracy was thoroughly tested for various flow conditions.
Results of our flow computations are presented in Section 3.

2. A MIXED EULERIAN-LAGRANGIAN SOLUTION ALGORITHM

2.1. Outline of the ELAFINT Algorithm

There are two distinct aspects to the computational framework, called ELAFINT,
reported in Udaykumar et al. [12]. These are:
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FIG. 2. Illustration of objects, markers, and normal convention in the description of interfaces.

(1) A pressure-based flow solver to simulate the incompressible fluid flow over
a wide range of Reynolds numbers.

(2) A procedure to deal with the interaction of fixed arbitrary geometries and
evolving moving boundaries with the flow.

The first aspect is straightforward and approached in a conventional manner using
the robust pressure-based solution procedure detailed by Patankar [25] and in the
context of more modern developments by Shyy [26]. The scheme to track the
moving fronts and describe complex geometries is summarized below, following
which the flow solver and its interaction with the internal boundaries is described.

2.1.1. Interface Tracking Algorithm

The interfaces are described by means of markers indexed sequentially and
separated into objects. There is no restriction on the number of objects or on the
end conditions that can be imposed on these curves. As shown in Fig. 2, the objects
can be open or closed. Furthermore, they can be fixed or moving. They can enclose
different phases or materials with different properties. Once the interface descrip-
tion is obtained in terms of markers and their positions, the shape characteristics
such as normals and curvatures can be extracted. The convention adopted by the
algorithm is to consider the normal to the interface as pointing from phase II to
phase I, as shown in Fig. 2, such that when one traverses the interface along the
marker sequence, phase II lies to the right. In order to handle multiple-valued
interfaces, the interface tracking algorithm employs piecewise polynomial fits to
compute the necessary shape derivatives at each marker location. Facility exists to
construct quadratic or cubic-spline functions x;(s) and y;(s). The polynomial fits
are obtained by parametrizing the curve as a function of arclength s so that, for
the ith marker,

X =x;(8), yi=yi(s). (1)

Then the normal and curvature are obtained by taking appropriate derivatives of
these piecewise polynomials. Thus, the components of the normal are
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Interfacial markers are advected to their new positions by Lagrangian transla-
tion. Thus,

xFl=xk+ Aty (5)

yl = yk+ Atv, (6)

where subscript / indicates the interfacial marker number and superscript k implies
the time level. It was demonstrated (Shyy et al. [1], Udaykumar and Shyy [11, 23])
that the interface tracking procedure can handle extreme deformation, including
topological changes such as repeated mergers and breakups. It was also established
that the interface tracking facility is versatile and accurate.

Once the objects are described on the computational domain, the interaction
with the flowfield needs to be established. This is mainly done by providing the
following information:

(1) The cell in which each interface marker lies.

(2) The markers contained within each interfacial cell (i.e., control volume
through which the interface passes).

Since a Cartesian grid is employed, establishing these relationships is a straightfor-
ward task. Armed with this information, one can provide and extract information
of use to the flow solver and interface tracking components of the algorithm. Based
on the information mentioned above, the flow solver can incorporate either changes
in the control volume definitions (as in the cut-cell approach) or appropriate source
term contributions (as in the immersed boundary technique). These two approaches
enable the effects of the internal stationary, as well as moving boundaries, to be
communicated to the flowfield. In turn, based on the flowfield developed, the motion
of the interface can be determined. In Udaykumar and Shyy [11], moving as well
as stationary solid-liquid boundaries were handled by the cut-cell technique. In
this work, the cut-cell technique is retained for the stationary solid-liquid bound-
aries, while the immersed boundary technique (Peskin [21], Fauci and Peskin [27],
Unverdi and Tryggvason [9]) is used to treat moving two-fluid boundaries. These
issues are discussed in the following sections.
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2.2. Formulation

Consider the two-dimensional planar or axisymmetric, incompressible Navier—
Stokes flow. The governing equations in conservation forms are:

Continuity equation

7 —(e) ——(y ov) =0 (7)
Momentum equations,
a(ou
(agt) oy Quu) + ——(y ouu)
_ op 9 ou 1 K} du
UCO 19
YR CLL e > (ymew)
ap mv 9 av 1 9 v
=—X-u—+— +— " +S,;
ay H)? 6X< 6X> y" 8y<y 6y> S ©)
Energy equation,
aeT) | 19 _a< ) 1a<ma_T>
o e ety = 2 (win ) (e S 10)

where m = 0 for the planar case and 1 for the axisymmetric case. In the above, @
is the fluid density, u and v are the fluid velocity components, T is temperature,
p is pressure, and w is the coefficient of viscosity. S, and S, represent the source
terms in x- and y-momentum equations which include, for example, the buoyancy
term under the Boussinesq approximation and the surface tension contributions
discussed later.

The boundary conditions to be applied on the interface for cases involving no
mass exchange across it are the continuity condition and normal stress balance,

Vir = (Vi) = (Vi (11)
P2 P11 =YKt e <88"/1n>2 M <aa‘;n>1 , (12)

where subscripts 1 and 2 represent the two adjoining fluids and I represents the
interface, vy is the surface tension, V,, is the normal velocity component, and « is
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FIG. 3. Illustration of the interaction of the solid-liquid and liquid-liquid boundaries with Cartesian
grid. The solid-liquid is treated using cut-cell technique, while the liquid-liquid interface is modeled
with the immersed boundary technique.

the surface curvature, with the normal pointing from fluid 2 into fluid 1, as shown
in Fig. 3.

2.3. Discretization Procedure of Flow Equations

The discretization of the governing equations is carried out using a control volume
formulation, and will be presented here with particular reference to two-dimensional
planar flow. Similar treatment applies for the axisymmetric case. Consider the
conservation law for the transport variable ¢, defined to be (a) 1 for the continuity
equation, (b) u and v for the x- and y-momentum equations, and (¢) specific enthalpy
(h = C,T) for the energy equation. In the general case, we have

"(9‘1’) LV (oud) = (V-TV) +S. (13)

The control volumes in the vicinity of a solid boundary passing through the grid
are irregularly shaped and in the general case can assume a five-sided shape as
shown in Fig. 1b. In order to evaluate the fluxes through the cell faces, we integrate
Eq. (13) over the control volume and employ the divergence theorem for two-
dimensional problems to obtain

9% 14+ § (oud)-ndl=§ (V) - ndl + | Sda, (14)
IA at 3€ fﬁ f

where the second term on the left-hand side is now the line integral of the outward
normal convective fluxes and the first term on the right side is the line integral of
the outward normal diffusion fluxes through the faces of the control volume.
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We now proceed to discretize each of the terms in Eq. (14) for the control volume
shown. Thus

k+1 pk+1 _

I :Qi,] ij Qf‘fj f{]
[ S5Eaa — Ay (15)

where the superscript k, k + 1 indicate the time levels and 6t is the time step size.
A, is the area of the irregular control volume. The time derivative is discretized
in the backward Euler form leading to an implicit-in-time solution procedure which
relaxes the time step constraints in comparison with explicit schemes. Next,

5
$ (Que) - ndl = (o) dlj (16)
=1

is the summation of the convective normal effluxes through each cell face of the
control volume shown in Fig. 1b. The superscript k + 1 indicates the implicit nature
of the scheme. Following Shyy ef al. [1] and Udaykumar et al. [12], the diffusion
fluxes are computed as

ﬁ (T'Vé) - ndl = i (r, <a—"5) )kﬂ dl;, 17)

= onji
where n denotes the normal direction. Let us denote the source term as

SdA =S. (18)
J.

Here S contains contributions from the pressure and body force terms. Substituting
the above Egs. (15-18) in Eq. (14) one obtains the discretized form as

OFHL kT — ok k. 5 5 ap\ Ve
2Oy S unr =3 (1 (2) ) s o)
=1 =1 nji

In particular the discrete form of the continuity equation can be written as

(ef' — o))

S
5 Aw T 2 (Qu) ! dl = 0. (20)
=1

Now multiplying Eq. (20) by the value ¢f; and subtracting from Eq. (19) gives

o ) S (2 Y s
= ’]& L2 Ay + 2 (o (b — i) dly =D, (Fz (5)) di+ 8. (21)
=1

=1

In the notation of the pressure-based methodology (Patankar [25], Shyy [26]), we
cast the final discretized form as

aP¢P:aN¢N+aS¢S+aE¢E+aW¢W+b’ (22)
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where the subscripts refer to the points in the five-point stencil, shown in Fig. 1a
for a typical bulk cell. The last term on the right, b, contains the discretized contribu-
tions from the source terms and boundary conditions and is given by

b=S+T, (2—2) dl; — ou,dly (b — bp). (23)

The form of the coefficients ap ¢ w n s depends on the convection scheme employed.
In this work, we employ the second-order central difference scheme for the convec-
tion term. Diffusion and pressure terms are also discretized using central differences.
When cast in the matrix form Eq. (22) reads

[C][®] = [B], (24)

where [C] is a pentadiagonal coefficient matrix, ® is the solution vector, and B is
a source vector. The procedure usually adopted is to solve the system of equations
in iterative fashion employing a line SOR method which calls for a tridiagonal
matrix solution procedure. A pressure-correction procedure provides the pressure
field consistent with mass conservation. In the pressure-based methodology, it is
common practice to use a staggered layout of variables. However, here we use a
collocated arrangement of the dependent variables. This calls for special measures,
called momentum interpolation (Rhie and Chow [28], Lien and Leschziner [24]),
when estimating cell face velocities. The details of momentum interpolation will
be discussed next.

2.3.1. Momentum Interpolation

One of the key issues in using a pressure-based solver is the grid arrangement.
The staggered grid layout has been preferred for incompressible flow computations
for many decades due to its many advantages (Patankar [25], Shyy [26]). However,
the collocated arrangement has desirable attributes in terms of simplicity and econ-
omy and has come into more common use. For example, in the present case, in
dealing with the internal boundaries, whether by the cut-cell or the immersed
boundary technique, the use of a collocated variable layout leads to the treatment
of a single set of control volumes for all the dependent variables (namely, u, v, p,
and T). In the case of a staggered system, three sets of control volumes, for u, v
and the scalars need to be considered and the data structures associated with the
cut-cell, as well as the immersed boundary technique, need to be computed and
stored. A particular instance is the identification of the phase of the control volume.
When the staggered layout is used the phase in which the control points for the u,
v and scalar variables lie needs to be determined separately, while in the collocated
layout only one set of control volumes needs to be handled. This leads to a consider-
able savings both in terms of the programming effort and in the computational
effort expended in obtaining the information regarding the interaction of interfaces
with the flowfield.
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FIG. 4. Schematic of 1D collocated grid layout.
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One potential difficulty of the collocated grid is the occurrence of spurious oscilla-
tions in the pressure and velocity fields, leading to numerical instabilities for certain
flow problems (Patankar [25]). This is due to the fact that the collocated grid
arrangement leads to decoupling of pressure and velocity fields when the central
difference operator is employed in discretizing gradients in the flowfield. However,
with the incorporation of momentum interpolation, introduced by Rhie and Chow
[28], it is possible to prevent the onset of checkerboard phenomena resulting from
decoupling between pressure and velocity fields. However, as pointed out by Ma-
jumdar [29], the momentum interpolation form proposed by Rhie and Chow [2§]
can lead to solutions that depend on the relaxation factor employed in the iterative
solution procedure. Lien and Leschziner [24] have presented a form of momentum
interpolation that overcomes this problem and have applied this measure to obtain
solutions for a wide range of flow problems, including unsteady, turbulent, and
shocked flows. In our implementation, we use the version of momentum interpola-
tion, recommended by Lien and Leschziner [24], to evaluate the velocities at the
faces of the control volume.

Essentially, momentum interpolation introduces a third-order dissipation in esti-
mating the cell face velocity. This can be seen as follows. The discretized momentum
equations for the u-velocity control points shown in Fig. 4, up and ug, based on
Eq. (22) are given in the one-dimensional case by

app = E AppUnp + bu - (pe _pw)P (25)
nb=E,W

ArUp = 2 AupUnp + bu - (pe _pw)E s (26)
nb=EE,P

where subscript nb implies neighboring points in the stencil, b, here represents the
source term not including the pressure term, with ap = 2,,-pw a, and ap =
>, -£Ep An. The telative positions of the points subscripted, P, E, W, EE, and
WW, are shown in Fig. 4.

Equation (25) and Eq. (26) can be written as

Hp 1

=r_- — 27
up ap ap (pe pw)P ( )
Hy 1
£ - — 28
Ug 2y 4z (Pe = Pw)E> (28)

where H, = 2,,_gw dultyy + b, and Hg = 2,,_ggp @ity + b,. In performing
the interpolation, it is assumed that
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a, 2

H Hp H
el (—P —E). (29)

ap ag

Then, substituting Eq. (27) and Eq. (28) into Eq. (29), the interpolation for the

face velocity u, can be expressed as

N

1 1 1
Ue = [MP e (Pw = Pe)p+ ug ——(pw _Pe)E} +—(pr—PE), (30)
P ag a.

or alternatively,

U, :%(up +tug) + {ale (pp—PE) — % [aip (Pw—Pe)p + alE(Pw _pe)E]}'
OO0 O O o OV
@ @

In Eq. (31) the face velocity of the control volume is directly linked to the two
adjacent cell-center pressures through the term I above. This ensures that strong
coupling between the pressure and velocity fields is retained. The second term,
indicated as II, is the pressure smoothing term, which eliminates the nonphysical
wavy pressure or velocity fields. In fact, it can be shown that Eq. (31) can be recast,
following some manipulation (Lien and Leschziner [24]), as

3
u, = % (up + ug) + (%) O(AX). (32)

This brings to light the fact that momentum interpolation adds a third-order
dissipation term to the cell face velocity, relative to straightforward averaging of
adjacent cell-center velocities. Thus, spurious pressure oscillations are eliminated.
Typically, iterative procedures are used to solve the discretized momentum equa-
tions, and underrelaxation can be implemented in Eq. (25) in the form

up*=aup+ (1 — a)up, (33)

where « is the underrelaxation factor, up is the current iteration value, u¥ is the
value of up at the previous iteration, while u3* is the value obtained after relax-
ation. Similarly,

up*=oaug+ (1 — a)uk. (34)
Therefore, the cell face velocity, after including the relaxation factor, is
uf*=au,+ (1 —a)ul
1 1 111 1
o {E (uP + uE) + a_(pP - pE) - E [Z) (pw - pE)P + Z(pw - pE)E]} (35)

e

+ (1 —a)uk.
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The momentum interpolation as obtained from Eq. (35) yields flowfields indepen-
dent of the relaxation factor, thus eliminating the relaxation factor dependency
detected in early versions of momentum interpolation (Majumdar [29]). From Egs.
(33)-(34), up and uy can be rewritten as

s _

up = (1 “) 3 (36)
o (04
s _

uE=ui— (1 a> up. (37)
o [0

Thus, Eq. (35) becomes

=%(u +ui*)+ (1 —a) [ue ;(uﬁ-f—ui)]

a{alg(PP_PE) _%[al_P(Pw _Pe)P+alE(Pw _pe)E]}-

Equation (38) is the form of the momentum interpolation suitable for steady flow
problems. The extension of Eq. (38) for unsteady flow problems will include the
time-dependent term (@Axu°/At), where superscript o indicates the previous time
value. The appropriate form is

=i+ ) 0o o=t o)
)l e ()a) o

+ a% {(PP —PE) — % [(Pw —Pe)p+ (Pw — pe)E]} A

(38)

Although Eq. (39) applies to a 1D, uniform grid situation, it can be easily extended
to higher dimensions and nonuniform grids (Lien and Leschziner [24]).

2.3.2. Cut-Cell Procedures for Solid—Liquid Boundaries

In accounting for the presence of the internal solid boundaries which define
complex geometries on Cartesian grids, the cut-cell approach is applied (Shyy et
al. [1], Udaykumar et al. [12]). In this approach, when the interface passes through
the grid, the scenario shown in Fig. 1 is encountered. The control volume designated
by P is shown to be cut by the solid surface passing through the grid. The cut-cell
procedure rearranges the control volumes in the vicinity of the interface to form
a fully consistent mosaic of cells. This is obtained by redefining the interfacial cells
(i.e., the control volumes in the vicinity of the interface), so that the control volume
fragments lying in each phase are absorbed into appropriate partner cells. An
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FIG. 5. [Illustration of the situation resulting when a complex solid geometry is treated on a fixed
Cartesian grid. The cut interfacial cells are reassembled to provide a closed, consistent mosaic to maintain
flux conservation. The assembly of cells is performed by absorbing fragments of the control volumes
into appropriate cells to reconfigure the cells in the vicinity of the boundary as shown by the dotted
lines. Also shown is the normal probe for obtaining gradients at the interface.

example is shown in Fig. 5, where the dotted lines indicate the newly defined control
volumes. The fluxes through these redefined control volume faces are thereby
evaluated in such a way as to maintain conservation and consistency of the fluxes
across each control volume face. For example, the flux of a conserved variable is
computed for a cell that is abutted by two neighbors to the left (as in the case of
the hatched cell in Fig. 5), in such a way that the flux through the west face of the
hatched cell is the sum of the fluxes through the east faces of the abutting cells.
This procedure obviates any smearing of information at the interface since the
boundary condition (such as no-slip) is imposed at the exact location of the internal
boundary in each control volume. This is in contrast to the means employed by
Goldstein et al. [19] in imposing the no-slip condition. In that work, the no-slip
boundary condition is imposed via an external concentrated force field which is
computed based on the developing flowfield in the vicinity of the interface. Thus,
a feedback control approach is used to compute the shear stresses necessary to
obtain a no-slip condition. Information regarding the no-slip surface is redistributed
over the finite bound of the §-function used in the immersed boundary representa-
tion of the solid surface.

In the present case, for the evaluation of the source term b in Eq. (23), the
diffusion flux from the interface is obtained by describing the field ¢(x, y) for any
transport variable such as velocity or temperature. This is done in each phase
separately around the interface by means of a biquadratic function and the gradient
normal to the interface required in obtaining the diffusion flux is obtained by
extending a normal probe from the interface into each phase. The length of the
normal is one grid spacing 4. This situation is illustrated for the liquid phase in Fig.
5. The value ¢y 4, at the end of the probe is obtained from the biquadratic function
representation in the required phase as ¢(x, y) = ax*> + by? + cxy + dx + ey + f.
The coefficients are obtained by inverting the 6 X 6 matrix obtained by the known
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values of ¢ at six suitably chosen points in the required phase around the end of
the probe. The inversion of the matrix is performed by LU decomposition. Thus,
the required normal gradient of the field ¢(x, y) is computed as

I} _ (Prean — b1
on ( dn ) (40)

where dn is the normal probe length of one grid spacing /4. The pressure at the
solid boundary is obtained by computing the pressure in a similar manner to the
above at the reference point and extending the same to the interface, which implies
that dp/dn = 0 at the solid boundaries. In the case of the stationary solid boundaries
in this work, the convective interfacial fluxes do not contribute to the momentum.
However, for moving solid boundaries, the treatment is given in Udaykumar et al.
[12]. The procedures for the treatment of the internal solid boundaries lead to
stable, accurate computations of flows through complex geometries. Some results
are presented later in this work.

2.3.3. The Immersed Boundary Technique for Two-Fluid Interfaces

When the fluid—fluid interface (i.e., the moving boundary) lies on a fixed grid,
some means of communication between the interface and the Eulerian framework
for the field equations needs to be devised. One such technique is the cut-cell
method described above. In this work, we adopt the immersed boundary technique
originated by Peskin [21] and employed extensively by Tryggvason and co-workers
(Unverdi and Tryggvason [9], Nobari et al. [10], Juric and Tryggvason [13]) for a
variety of two-phase flow problems.

In the immersed boundary technique, the presence of the interface and its effect
on the flowfield is established by means of source terms in the governing equations;
i.e., the information from the Lagrangian interface component is redistributed to the
Eulerian framework. For the particular case of two-fluid interfaces under constant
interfacial tension, the source term represents the normal stress contribution from
the interface. The momentum jump condition, given by Eq. (12) at the interface,
is incorporated in the x- and y-momentum equations. Specifically, the contributions
to the normal stress balance from the capillarity term in Eq. (12) is redistributed
to the surrounding grid points; it is supplied to the source term S, and S, in Eqgs.
(8)—(9). This is done with the aid of a §-function of bound 44, where 4 is the grid
spacing. This procedure leads to the conservative redistribution of the source terms
to the grid, due to the properties of the delta function. The discrete delta function
at each point in the flowfield assumes the form originally proposed by Peskin [21],

7(x - (1) = (42>2H<”°°S o). it e

0, if[x — (x),| € R,

(41)

where x; represents the coordinate value and / represents the interfacial marker
index. R is set equal to 24 in our computations. Each marker contributes to the
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momentum source term in its proximal control points, i.e., those lying in the circle
of radius 2/ centered at the marker. The force contribution from each interfacial
marker to the momentum equations at any point P is given by

fr = kn,As, (42)

where As, is the arclength corresponding to the /th marker. Thus, the source term
in the momentum equations at a given point in the flowfield depends on the proxim-
ity of that point to the two-fluid interface. The magnitude of the interfacial forces
experienced is dictated by the delta function and is the sum of the contributions
of all the interfacial markers lying within the distance of 24 from the point. There-
fore, the normal stress contribution to the momentum equation is given by the ex-
pression

mwzgga—@mm. (43)

This procedure of redistribution of interfacial stresses as sources to the field equa-
tions leads to the smoothing of the discontinuity at the interface. The stability and
robustness of this method is enhanced by such smoothing.

The continuity condition at the interface for material interfaces, Eq. (11), is
enforced by extracting the normal velocity of the interfacial markers from the grid
information by means of a delta function. The é-function form is

V=Y 7(x— (x),)V, (44)

i

where the index i corresponds to the proximal (in the region given by R = 2h) grid
points. The interface is to be advected with this velocity.

Another feature that needs to be mentioned is the handling of property jumps
across the interface. In other approaches using a fixed grid (Kothe et al. [5], Sussman
et al. [6]) some field variable is employed to smooth the property jumps across the
interface. Specifically, a Heaviside function is employed such that

1, ifp>+68
0, ifp<—6
H(b)s = e 1 . (45)
LT .
— _+_ —
1 (5 - sin 5 >, otherwise,

where 6 is the region of bound 2/ around the interface. Usually this bound is taken
to be proportional to the grid size. Based on the Heaviside function, the material
properties are assigned as

B=p+ (,32 - B )(7(’((75)5, (46)

where B is any material property such as viscosity and density. The subscripts 2
and 1 indicate the two adjoining phases, in line with our convention for the normal.
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In the RIPPLE approach (Kothe et al. [5]), which is based on a VOF representation
of the phase field, ¢ is taken as a color function dependent on the fluid fraction
field, while in the level-set algorithm the ¢ value corresponds to a distance function.
In these methods the field variable ¢ is an essential part of the interface tracking
procedure. In the immersed boundary technique, Unverdi and Tryggvason [9] em-
ploy an indicator function which is obtained by solving a Poisson equation for
the entire domain. The indicator function has the characteristics of the Heaviside
function, but it has to be computed every time the interface moves. Thus, the
calculation of an indicator function involves the solution of an additional field
equation and does not fully exploit the available information from the explicitly
tracked interface. In our algorithm we have exploited the Heaviside representation
to achieve the property smoothing, based on explicit knowledge of the interface
and the two types of information indicated in Section 2.1.1 above. Once the marker
locations with respect to the grid are known, the property jumps can be assigned,
based on the Heaviside function. In the present case, the Heaviside function takes
the form

JH(x — (x);)
. %iZI <)Q_T()Ci)l+71—rsin%(xi—(x,«)l)>, if|X—(X)1|ER, )
R sgn(x — (%)) [x — (x);] < =4,
0, sgn(x — (x);) [x — (x);| > +36,

where (x;); represents the coordinate of the interfacial point where the Heaviside
function is required. The smoothing of the material properties is performed with
Eq. (46) above.

The material properties in the bulk of the phases are assigned first. Thereafter
the transition region between any two phases is smoothed by defining the Heaviside
function locally in this region. To accomplish this, one traverses along the interface
and modifies the value of the material property according to Eq. (46), in the cells
adjoining the interface and lying within the bound § = 24 of the interface. These
operations are confined to the region close to the interface only, hence relieving
the computational burden. This procedure for smoothing material discontinuities
holds when there are multiple interfaces, including cases in which interfaces may
enclose other interfaces.

2.4. Mass Conservation in Individual Phases

In the scheme presented above, the interaction of the interface tracking algorithm,
as provided by the immersed boundary technique, with the flow solver does not
enforce conservation of mass in the phase enclosed by the interface. This is because
the divergence-free velocity field is enforced in each control volume by the flow
solver; the velocity employed to evolve the interface is interpolated from such a
velocity field. This interpolated velocity field may violate the divergence-free condi-
tion, resulting in a mass leak from the phase enclosed by the interface. Peskin and
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Printz [30] suggest a method based on the modification of the divergence operator
in order to enforce mass conservation. In our work, we choose to achieve the same
result by enforcing mass conservation in our iterative solution process so that the
correct level of hydrostatic pressure is induced in the enclosed phase. This is done
in the following way. In order to satisfy the mass constraint we require, in each
enclosed phase,

Mpubble — J:;max QHy(Z)_de = const, (48)

where H, is my? for the axisymmetric case and y for the planar case, ¢ is the density
of the fluid inside the enclosed mass, such as a droplet, s is the arclength, and s«
is the total arclength of the curve representing the boundary of the enclosed mass.
In Eq. (48), a bubble is used as the example; obviously, the same procedure is
applicable to other cases, such as a droplet. Since the pressure correction formulation
only provides an estimate of the pressure gradients necessary to satisfy the continuity
equation cellwise (i.e., across control volume faces), global conservation information
is not provided by this means. Thus, the continuity constraint as expressed by the
pressure correction equation establishes the hydrodynamic part of the pressure
inside the enclosed mass consistent with the flowfield, but it provides no information
regarding the hydrostatic component. The dynamic form of the Young—Laplace
equation at the interface establishes the normal stress balance as

A(pg + p.) + A(viscous terms) = y(k; + k3 ), (49)

where A represents the jump across the interface and the viscous terms take the
appropriate forms in planar and axisymmetric cases, as given in Egs. (7)-(10). In
the above equation, subscript d indicates the hydrodynamic parts and ¢ the hydro-
static parts of the pressure. In the formulation presented here, the incorporation
of the surface tension terms in the momentum equations leads to the establishment
of the balance in Eq. (49). However, there is a missing component in the pressure,
namely p., which needs to be obtained to satisfy the mass constraint. Kang and
Leal [2] indicate the appropriate correction to the p. term as a time-dependent
value C(t) which needs to be computed to satisfy the mass constraint. This parameter
C(¢) arises when the pressure at the interface is obtained by integrating the compo-
nent of the momentum equations in the direction tangential to the interface in each
phase. This is easier to see in the case where the flow on each side of the droplet
is obtained separately and then matched at the interface through the jump condition
Eq. (12), as is the practice in the boundary-fitted formulation employed by Kang and
Leal [2]. In related work, the practice of rescaling the interface shape periodically to
maintain the enclosed mass constant was adopted (Stone and Leal [31]). In the
work presented by Nobari et al. [10], it is mentioned that the mass of droplets is
maintained, but the mechanism by which this is established by their solver is not
clear. In recent work on the dynamics of menisci in crystal growth, Shyy and Rao
[32] have, with the pressure-correction methodology used here, maintained the
volume of the meniscus by employing an iterative procedure to obtain the proper
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value of the hydrostatic pressure, consistent with Eq. (49) as well as mass conserva-
tion. However, the computations used the boundary-fitted technique and need to
be modified in the present context.

A method for correcting the hydrostatic pressure in the enclosed mass needs to
be devised so that it does not lose or gain mass. To achieve this goal, we devised
an indirect method of establishing mass conservation similar to that adopted by
Kang and Leal [2]. The desired result in enforcing mass conservation is to establish
an additive constant to the pressure inside the enclosed mass. Upon correction we
desire the balance:

A(pg + p. + 8p.) + A(viscous terms) = y(k; + k, + Ok). (50)

Here the correction to the pressure dp. is responsible for changes in the droplet
shape represented by Jk so that upon integrating as in Eq. (48) over this new
shape, the volume is conserved. In our procedure, during the iterative process of
establishing the flowfield, we impose the mass constraint on the interface motion
by establishing the shape correction dk and inducing the correct pressure increment
op.. At each iteration, this shape correction is performed after the interface has
been advected to its new position based on the kinematic condition. Thus the fresh
iterate of the x-coordinate of interfacial marker position is obtained by

(XME), = Xf + 8t V,n,

(51)
(XN = (XPR1), + 8,

where subscripts p and ¢ represent predicted and corrected values, subscript / is
interfacial marker index, superscripts N and k represent the iteration number and
time step, respectively. Corresponding expressions apply for the y-coordinate. The
shape correction in the normal direction &, is performed in an iterative fashion by
means of a bisection method, so that the mass of the droplet as computed from
Eq. (48) is maintained a constant. The value of §, is obtained from the knowledge
of the arclength measure of the interface, already established in the course of
calculation, and the estimate of the mass loss. Specifically, the bisection method
used to obtain the value of §, can enforce mass conservation and enable the
procedure to converge in a few iterations (typically <5). The entire mass conserva-
tion measure is enclosed in the outer iteration loop for the entire solution procedure,
including interface movement, flowfield computation, and mass constraint imposi-
tion. The procedure is then required to achieve a preset tolerance for convergence
levels of the flowfield, interface shape, and enclosed mass. It should be emphasized
that the present procedure is of a predictor—corrector type, and at convergence
should yield a droplet shape independent of the manner &p,. is imposed.

3. RESULTS AND DISCUSSION

In this section we seek to illustrate the accuracy and versatility afforded by the
combination of the cut-cell method and the immersed boundary technique. Towards
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this objective, we first present test cases to evaluate the performance of the cut-
cell method in the current collocated-variable framework. This cut-cell approach
was tested in previous work (Shyy et al. [1], Udaykumar et al. [12]) for the staggered
variable arrangement. The second step is to compare the results for the immersed
boundary technique in the present finite-volume, pressure-based framework for
droplet dynamics. For this particular application, reliable experimental and numeri-
cal results exist, at least for highly viscous flow, with which we compare our results.
Finally, we put the cut-cell and immersed boundary representations together to
enable the simulation of droplet dynamics in a constricted tube. This last aspect
demonstrates the ability of the present method to handle multifluid flows in arbitrary
geometries under viscosity- or inertia-dominated flow conditions.

3.1. Flows with Fixed Arbitrary-Shaped Internal Boundaries

One objective of this work is to develop a facility for computing flows in complex
geometries on Cartesian grids. This feature will remove restrictions regarding the
flow domains in which the moving boundary simulations can be performed, without
having to resort to body-fitted grids or unstructured grid layouts. We first compare
solutions for a stationary interface with those from well-tested solution procedures
using body-fitted coordinates (Shyy [26]). In both cases, the second-order central
difference scheme is used to discretize the convection, diffusion, and pressure
gradient terms in the momentum equations. This is one of several exercises per-
formed to validate the conservation and consistency characteristics of the cut-cell
method used to treat the complex geometry. The interface is sufficiently deformed
that all the possible types of cut cells are encountered. The square cavity is a
frequently adopted test bed for numerical experiments for incompressible flows
and benchmarked solutions exist. We deform the base of the cavity, the amplitude
being 10% of the base. A 121 X 121 Cartesian grid is employed. We first present
the results for a driven cavity flow, where the top wall of the cavity is pulled at
velocity U = 1 corresponding to a Reynolds number of 1000. The results from the
present method are compared with a previously benchmarked body-fitted staggered
grid formulation (Thakur et al. [33]) with the same grid size. The results are shown
in Fig. 6. The streamline pattern is shown in Fig. 6a. A quantitative comparison
can be seen in Figs. 6b and 6¢, where the centerline velocities are plotted. As seen
in this figure, the centerline profiles obtained from the cut-cell technique using the
collocated grid (solid line) agree well with the body-fitted staggered grid calculations
(open circles). Results for problems involving natural convection are presented in
Udaykumar et al. [12].

We next demonstrate the ability of the complex geometry treatment to simulate
more complex flow situations. In Fig. 7, the streamlines and pressure contours for
a driven cavity with top and bottom moving walls and enclosing a semicircular
cavity at the bottom wall are shown. The smaller cavity is indicated with dotted
lines in Fig. 7, which represents a solid boundary with zero internal thickness. This
configuration gives an indication of the versatility of the present algorithm. Figure
7a shows the streamlines and 7b shows the pressure contours in the two cavities.
As can be seen from the figure, for the Reynolds number of 1000, the multiple
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FIG. 6. Comparison of a deformed cavity at Re = 1000, for results using the cut-cell technique on
the collocated grid with the solution on a boundary-fitted staggered grid. (a) Streamline contour for
the collocated grid. (b) u-velocity along vertical centerline for the present collocated grid case (solid
line) and the staggered grid case (open circles). (c) v-velocity comparison along vertical centerline.
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FIG. 7. Double-driven cavity flow with obstruction. R, = 1000, 121 X 121 grid. Dotted line shows

the shape of the enclosed cavity.
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FIG. 8. Natural convection flow in a cavity. Pr = 1, Ra = 10, 121 X 121 grid.

recirculation zones, including the one in the smaller cavity, are well captured. It
would be a significant task to fit a good boundary-fitted grid to this configuration.
An added advantage that may be realized is that the grid can be refined easily in
the present Cartesian framework without consideration of the solid boundary shape
or the number of solid boundaries present.

Figure 8 shows the results of a natural convection flow in a square cavity with
multiple objects in the flowfield. The sidewalls of the cavity are heated, the nondi-
mensionalized temperature of the left wall is maintained at O and that of the right
wall at 1. The top and bottom walls are adiabatic. Each of the cylinders is maintained
at a constant temperature of 0. A Prandtl number of 1, Rayleigh number of 10°
flow was computed. In Fig. 8a we show the isotherms and in 8b, the velocity vectors.
The skew-symmetry of the temperature field, obtained in such a cavity without
obstacles, is broken by the placement of the five shapes. In particular, the tempera-
ture gradients in the right bottom corner appear to be enhanced by the presence
of the cylinder in that location while those in the lower left corner are diminished.
This would obviously have a significant impact on the heat transfer within the cavity
shown. This type of facility would be useful in computing heat transfer around
complex geometries and can be combined with phase change as demonstrated in
Udaykumar et al. [12]. No restriction exists on the number or shape of the obstruc-
tions that can be inserted in the domain. Since all the measures dealing with the
interior solid boundaries are handled by means of one-dimensional arrays, the
expense of incorporating internal boundaries varies linearly with the number of
objects. No grid generation measures are required when a new object is introduced,
thus objects can be added or deleted without affecting the existing geometry globally.

Finally, a transient calculation is performed in an open channel configuration.
The case shown in Fig. 9 demonstrates the usefulness of this procedure for the
time-dependent case. Here, the inlet is at the left of the domain. The Reynolds
number in this case is 100. A 121 X 81 grid is used. The development of the
recirculation zone behind the cylinder is shown until a steady state is reached at
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FIG. 9. Open channel flow, transient calculation. R, = 100, 121 X 81 grid. (a) to (d) Streamline
plot showing development of the steady recirculating flow behind the cylindrical obstruction computed
using the cut-cell method. (e) Steady-state streamlines from the body-fitted calculation.

nondimensional time ¢ = 3.5. In Fig. 9¢, we show the streamlines obtained for this
geometry from a steady-state calculation on a well-tested boundary-fitted staggered
grid (Thakur et al. [33]). The flowfields obtained from the two methods are identical.
In particular, the recirculation zone in each case extends up to x = 3.61 in the rear
of the cylindrical obstruction. The slight differences in the streamlines between (d)
and (e) are due to the differences in data representation on the Cartesian and
curvilinear grids which is interpreted differently by the contouring facility. It is also
noted that the cylindrical obstruction has been shown in this figure by means of a
phase fraction contour. The step-like nature of the obstacle is a limitation of the
contouring procedure. As far as the solver itself is concerned, the surface is repre-
sented smoothly by means of the cut-cell technique.

3.2. Moving Boundary Flow Problems

3.2.1. Deformation of Viscous Droplets in Axisymmetric Extensional
Stokesian Flow

We now present results for the droplet deformation studies. A straining flow is
imposed on the droplet and the Stokes equations are solved. The nondimensionaliza-
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tion of the governing equations is performed using the reference quantities as
described below.

We define the viscosity ratio between droplet and suspending fluids as A =
i/ wo. The characteristic velocity, length, pressure, and viscosity are the following:
u. = ylu., I. = a = the radius of undeformed circular shape, p. = wp.u/l.,
e = m, = the viscosity of the suspending fluid, and v is the droplet surface tension.
Then, the dimensionless governing equations for creeping flows become:

Continuity equation,
V-V=0 (52)

Momentum equation for suspending fluid,
0=—W+VW+Jm&y%©mh (53)
for the droplet,
O=—W+AWV+fm&r%@mm (54)

and the far field condition for planar flow is

2 0 0 X
w=%o-ao-y (55)
0O 0 O

and for axisymmetric flow,

[\S)
o
o
=

Vo.=—|(0 -1 0 [|-]0], (56)
0o 0 -1 y

where the capillary number Ca arises from the nondimensionalization and is given
by (u.Galy). (G is the strain rate of the imposed flow.) The discretization of the
above equations is described in Section 2.3. The flow condition and grid layout is
indicated in Fig. 10. The grid distribution is nonuniform; in the farfield, i.e., away
from the inner region shown, the grids are stretched linearly toward the boundaries
of the domain, while in the inner region a uniform fine grid is used. This yields
better resolution in the desired region of the flowfield, i.e., in the vicinity of the
interface. The flowfield is imposed as shown, thereby exploiting the symmetry of
the problem. The incoming flow at the top and outgoing flow at the right are held
constant as specified by Eq. (55) and Eq. (56) for planar and axisymmetric cases,
respectively. The distribution of markers along the interface is maintained at a
constant arclength spacing. The arclength spacing used in all computations presented
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FIG. 10. Illustration of domain of computation and boundary conditions for droplet deformation
simulation.

here is 0.8/, which was found by experimentation to provide adequate resolution
and accuracy. The redistribution along the interfacial curve is performed at every
time step to prevent undesirable depletion or accumulation of markers.

At the outset, a suitable grid is determined for the moving boundary simulations.
A grid independence study was first performed to obtain the steady-state shapes
of the droplet in extensional flow at a capillary number of 0.1, which is slightly
below the critical capillary number. In Fig. 11, we compare the results obtained from
calculations on an 81 X 81 and 161 X 161 grid with and without mass conservation. As
can be seen, the results from the two grids with mass conservation imposed are in
close agreement. We henceforth retain the same grid density as that corresponding
to the 81 X 81 grid in the present case. The number of grid points will therefore
scale with the domain size.

The moving boundary capability using the immersed boundary technique is first
tested against the results of Stone and Leal [31, 34] for steady axisymmetric droplet
shapes in a uniaxial extensional flow. For a range of capillary numbers below the
critical capillary number Ca,, the droplet deformation culminates in a steady-state
shape. Stone and Leal [31] have proposed that the deformation parameter D =
(L — W)/(L + W) is an indicator of the final bubble shape at steady state, where
L is the major radius and W is the minor radius of the ellipsoidal droplet as shown
in Fig. 10. This quantity therefore provides an estimate of the aspect ratio of the
steady-state shape.

In Fig. 12, we compare the D vs. Ca curves obtained from our calculations with
those of Stone and Leal [31, 34] for viscosity ratio A = 1. The grid in this case was
61 X 61 in the inner region of dimensions 3 X 3 units. The arclength spacing of
the interfacial points, following testing to determine accuracy, was fixed to be 0.8/
in this and following calculations. The number of points on the interface was 45 at
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FIG. 11. Grid independence test for Ca = 0.1. The final steady-state shapes are shown for (a) .....
81 X 81 grid without mass conservation; (b) --, 161 X 161 grid without mass conservation; (c) —, 81 X
81 grid with mass conservation; (d) -.-, 161 X 161 grid with mass conservation.

steady state. As can be seen from the figure, our results are in good agreement
with those of Stone and Leal [31]. Furthermore, the critical capillary number of
Ca,, = 0.12 obtained in the present case also corresponds to the value in Stone
and Leal [31].

Figures 12b and c show the flowfield and pressure contours in the case of Ca =
0.1. It is clear from the velocity vector plot that the flow at steady state is tangent
to the surface of the droplet and the single-domain treatment of the interfacial
forces yields the desired shape and flowfield by the balance of normal stresses in
Eq. (12). The large pressure gradient across the interface is also seen clearly in
this figure.

We next study the unsteady deformation and recovery characteristics of droplets
under imposed straining flow with Ca > Ca.,. The inner region of fine grid in this
case is 6 X 6 units. The domain of computation is 8 X 8 units in size. In the inner
region 121 X 121 grids are used, while in the coarse grid region 20 points are used
along each direction and the grid is linearly stretched. In Fig. 13a, we show the
shapes of the droplet at different times for the Capillary number of 0.14. In this
case, the droplet deforms to a maximum extent of 5.4 times the initial radius at
nondimensional time ¢ = 35. The number of points on the interface increases from
27 initially to 140 at the final stage. To study the recovery of the droplet, we turn
off the flow at the stages corresponding to the shapes at + = 28 and ¢ = 35 and
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FIG.12. (a) Comparison of D = (L — W)/(L + W) vs. Ca obtained from the present method (solid
line) with the results (dashed line) of Stone and Leal [31]. The critical capillary number is approximately
0.12 in both studies. (b) Velocity vectors at steady state for Ca = 0.1. (c) Pressure contours at steady
state for Ca = 0.1.

track the recovery path in the two cases. The results are presented in Figs. 13b and
c, respectively. As can be seen, for the smaller deformation case the interface
recovers back to the spherical droplet shape, while for the larger deformation case,
the recovery process results in the impending breakup stage shown. Although the
further development of the droplet after this stage can be handled by the code, we
stop the computations at this stage. From Fig. 13b, it is seen that the droplet returns
to a sphere of radius 1, which demonstrates that the mass conservation procedure
implemented holds well in the course of the large deformations experienced by the
droplet. It may be surmised from Figure 13c that a small satellite droplet is formed
along with two larger droplets in the recovery from the large deformation. This
behavior of the droplets with extent of deformation for the same capillary number
is in qualitative agreement with the results of Stone and Leal [34].

In Fig. 14, we show the flowfields resulting from the computations. In Fig. 14a,
at left are the velocity vectors and at right the pressure contours for the final shape
of the interface (¢ = 35). As can be seen, the flow in this case tends to draw the
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FIG. 13. Deformation and relaxation of the droplet for capillary number of 0.14 (critical capillary
number is 0.12). (a) Deformation stage, shapes shown att = 0, 7,21, 28, and 35. At t = 38 the deformation
is 5.4 times the original undeformed radius. (b) Recovery of the droplet from shape shown at r = 28
in (a). (c) Recovery of the droplet from shape shown at t = 35 in (a).
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FIG. 14. Left row—velocity vectors (a) at the times r = 35 in Fig. 13(a); (b) the final interface
location in Fig. 13(b); (c) the final interface location in Fig. 13(c). Right row—pressure contours
corresponding to the above.
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FIG. 15. Recovery curves for viscous droplet subjected to uniaxial extensional flow as a test of the
accuracy of the method for large deformations and property jumps. (a) The recovery curve for A = 1.0.
(b) Recovery curve for A = 10.

droplet out into a filament. In Fig. 14b, the velocity vectors for the recovered shape
after release from the smaller deformation are shown. The velocity magnitudes are
very low (O(107*)) in this nearly quiescent state of the flowfield. The corresponding
pressure contours are shown at right. It can be seen that the pressure levels inside
the droplet are uniform and equal to approximately 1.96 in value, which is close
to the expected static value for the given initial droplet shape. In Fig. 14c, the
velocity vectors and corresponding pressure contours for the final interface shape
in the evolution of the droplet in Fig. 13c are shown. The impending breakup of
the droplet is evident from the large velocity and pressure values observed in this
figure. The capillary induced flow which results in the breakup of the droplet is
clearly seen in regions of large negative curvature in Fig. 14c. Due to the lack of
resolution in the region of breakup, the values in this figure are not of significance.
It is noteworthy that the collocated grid solution framework holds up in the presence
of the large pressure gradient seen in this case (maximum pressure value = 24;
minimum = —0.8).

In Fig. 15, we present the recovery characteristics of viscous droplets in uniaxial
extensional flow for the viscosity ratios A = 1.0 and 10.0. In Fig. 15a, we plot the
deformation of a droplet for the case of Ca = (.13, which is slightly above the
critical capillary number, and A = 1.0; i.e., the viscosities of the droplet and the
suspending fluid are the same. The droplet is deformed to a certain L and a step
change in the flow to Ca = 0.065 is made. The step change in the imposed flow
strength is made at three different points along the deformation curve. The shapes
along the deformation and recovery curves are also shown in the inset boxes. These
curves seek to demonstrate the accuracy of the present calculations for long periods
and large magnitudes of droplet deformation. The results here are in agreement
with those of Stone and Leal [34]. In particular, the fate of the recovering droplets
from three different initial deformations, following a step change in the flow strength
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match with the predictions in Stone and Leal [34]. The initial large deformation of
the droplet due to stretching is evident in the inset marked I. When the released
droplet takes path II, i.e., for a L value before release of 2.79, the droplet recovers
to a steady-state shape corresponding to Ca = 0.065. For a value of L = 3.07, no
recovery is possible. In this case, as can be seen in the recovery curve, the droplet
initially shrinks. However, during this process a waist develops at the equator of
the droplet and results in the extension of the droplet as the flow induced by the
capillary forces accompanying this negative curvature drives the fluid outward, as
seen in the extreme case in Fig. 14c. This situation is unstable and leads to the
further development of the waist and subsequent breakup of the droplet. Thus,
droplet breakup in such flows is dependent on the competition between the imposed
flowfields and the flow induced by capillarity. Therefore, although a waist exists in
the deformation curve marked I, in this situation the flows due to stretching and
capillarity reinforce each other, while in the recovery phase they oppose each other.
The result of the recovery process depends on the strength of the destabilizing flow
induced by the capillary forces acting at the waist, which depends on the curvature
at the waist. In Fig. 15b, for example, it is seen that the droplet in case IV, which
represents L = 3.24 before release, rapidly heads toward breakup. This is in contrast
to the other cases, where there is an initial tendency to respond to the imposed
flowfield before capillarity takes over. It is therefore clear that questions regarding
recovery, the number of droplets resulting from breakup, the sizes of droplets, and
so on, can only be answered in the context of the flowfields imposed, relative
properties of droplets and suspending fluids, and the extent of deformation.

The rates of deformation obtained from our calculations agree very well with
those in Stone and Leal [34]. Some differences in times of deformation exist between
the two calculations in the initial phase of the deformation. These may be due to
the differences in initial conditions or capillary numbers chosen for the deformation.
A notable point is that the time scale of deformation of droplets in viscous exten-
sional flows is expected to be proportional to (1 + A) (Stone and Leal [31]). A
comparison between Figs. 15a and b reveals the validity of this scaling.

3.2.2. Deformation of Droplets in Extensional Flows with Inertia Effects

In order to demonstrate the ability of the algorithm to deal with convective
droplet dynamics, we investigate the effects of an imposed uniaxial extensional
flow. The scales chosen for this problem are the same as the ones for the viscous
droplet presented in the previous section. However, in this case, with the inclusion
of the convection terms, the nondimensionalized governing equations are

Continuity equation,
V-V=0; (57)
Momentum equation for suspending fluid,

v R S-S _
o FVVV) = —Vp ot e TV o f nd(x — (x),) ds (58)

for the droplet,
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Under convective conditions the relevant nondimensional parameters that arise
are the Reynolds number (Re = 20.(Gl.)l./u., where [. is the droplet radius) and
the Weber number (We = 20.(Gl.)./y). The former provides a measure of the
relative dominance of inertia to viscous effects, while the latter is the ratio of inertia
to capillary forces. In the results presented the imposed flow corresponds to a
Reynolds number of 10. 8 = p,/0, denotes the density ratio and A = w,/u, is the
viscosity ratio.

We attempt to obtain the critical Weber number for a droplet under such an
imposed linear flow condition. Kang and Leal [2] have obtained the critical Weber
number of a bubble at this Reynolds number as lying between 0.9 and 1.0. In that
work, the density and viscosity inside the bubble was considered to be negligible
so that the pressure inside the bubble remains a constant, and the interior of the
bubble is passive, in that it has no effect on the deformation characteristics. Under
this assumption they fit a boundary-conforming grid to the exterior of the bubble
and obtained the transient deformation characteristics of the bubble surface. This
treatment is a limitation imposed by the boundary-fitted grid approach. If calcula-
tions were to be performed inside the bubble also, grid-generation would become
complicated. In our framework this limitation does not exist. On the other hand,
in the present framework, it is not a simple matter to render the flowfield inside
the bubble entirely passive, since the present method is a single-domain method.
This rendering of a part of the domain passive was accomplished in previous
calculations involving stationary and moving solid boundaries, where there is no flow
in the solid region. In the case of two-fluid interfaces this is not as straightforward to
do, due to the fact that the interface velocity is governed by the kinematic condition
at the boundary and the boundary velocity is obtained from a single-domain formula-
tion, Eq. (44). Thus information regarding the velocity field is required from both
sides of the interface, which means that the flowfield needs to be computed in both
phases. Therefore, in performing our calculations in this section we will only be
able to obtain a qualitative comparison with Kang and Leal [2], and we will support
our result with expectations based on the physics of the problem. The flow configu-
ration remains the same as shown in Fig. 10. The density and viscosity ratios used
are B = 0,/0, = 0.02 and A = w;/u, = 0.02, respectively.

In Kang and Leal [2], it was shown that the deformation of the droplet, in
particular the availability of a steady-state solution for a given Weber number was
dependent on the initial state of the droplet in the flowfield. Therefore, although
for certain Weber numbers close to, but below, critical, gradually increasing the
flow strength from a lower Weber number yielded steady-state solutions, imposing
a step change in the flowfield could drive the droplet toward unsteady, continuous
stretching. Such behavior was noticed in our simulations also. Therefore, for the
cases presented here, we obtained the flow at a given We, under a particular
combination of density and viscosity, starting from the flowfield corresponding to
a value of We 0.1 lower. The curves in Fig. 16a show the variation of D and We
for the imposed flow at Re = 10. To start these curves, we first obtained the flowfield
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FIG. 16. Deformation of a bubble under uniaxial extensional flow at Re = 10. (a) Curves show the
deformation parameter D vs Weber number We with different fluid properties. The critical Weber
number varies from case to case. (b) L vs ¢ plot (for 8 = 0.02, A = 0.02) with three different Weber
numbers (We = 0.7, 1.1, 1.2).

at We = 0.5 by imposing a flowfield instantaneously. This led to an oscillation of
the droplet due to the competition between inertia and capillarity effects. This type
of behavior is also reported by Mashayek and Ashgriz [35]. For example, for 8 =
0.02 and A = 0.02, upon imposition of the flowfield the droplet at We = 0.5 stretches
rapidly from its initial circular shape to a value along the x-axis of L = 1.4, and
subsequently relaxes in an oscillatory manner to a steady-state value of L = 1.17.
Stepping up the Weber numbers in increments of 0.1 thereafter yields the curve
shown in Fig. 16a. For 8 = 0.02 and A = 0.02, and at a Weber number of 1.2, a
steady state did not exist. If these fluid properties are changed, then the critical
Weber number changes accordingly. A closer examination of the case of 8 = 0.02
and A = 0.02 can be seen from the curves of L versus ¢ shown in Fig. 16b, where
the deformation histories for We = 0.7, 1.1, and 1.2 are plotted. As can be seen,
these curves show the oscillatory relaxations mentioned above. However, in the
case of We = 1.2, the oscillations carry the interface away from a steady state and
instability results. As pointed out in Ryskin and Leal [36], the critical Weber
numbers for bubbles (8 — 0, A — 0) and droplets are expected to be different. In
our cases, we expand the parameter range of the density and viscosity combinations.
To gain more insight, the following description is given.

Considering the normal stress balance at the interface represented by Eq. (12),
the pressure on each side of the interface needs to be obtained. This is achieved
if one defines a system of coordinates at the interface, such that n and ¢ are
coordinates oriented along the tangential and normal directions to the interface.
Now, the pressure in each phase at the interface may be obtained by solving the
momentum equation at the interface, which may be written in the form (Ryskin
and Leal [36])

V(p + ouu) = (ou X w) — 2V X w, (60)
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where w is the vorticity. Integrating this expression along the n-direction and consid-
ering the idealized case of inviscid, irrotational flow, one obtains

Pito = (Pe)ito = Ciro (u%)i/o, (61)

where the subscript i/o implies that the expression applies to both the inner and
outer phases of the interface and u, is the n (tangential)-component of the velocity
at the interface. The component of pressure p. is hydrostatic. The difference between
the inner and outer hydrostatic pressure components is adjusted as described pre-
viously for enforcing mass conservation. Under this idealization, the dynamic pres-
sure plays the dominant role in the normal stress balance at the interface. This is
an important term that distinguishes the behavior of bubbles from the inviscid
droplets. In the case of the bubble the dynamic contribution to pressure from the
inner phase is negligible and the stability of the bubble is influenced only by the
outer dynamic contribution. For the case of an inviscid droplet with the density
ratio 8 = 1, the kinematic condition implies (u,); = (u,),. Therefore, under this
condition, when the pressures at the interface as given by Eq. (61) are inserted into
Eq. (12), the dynamic contributions to the normal stress balance exactly cancel. In
inertia-dominated flows it is the dynamic contribution that dominates in the stress
balance. Therefore, in this situation the behavior of the inviscid droplet will be
vastly different from that of the bubble, where the inertia effect is negligible, and
different densities of the droplet will cause different critical Weber numbers.

For the case of a droplet, since the dynamic contributions from the inner surface
partially counteracts the dynamic pressure contribution on the outer phase, the
critical Weber number may be expected to be higher than that for a bubble. In the
simulations presented here, the ratios of density and viscosity are 8 = 0.02 and
A = 0.02. To see what the flowfield characteristics are in this case, we plot in Fig.
17a the velocity vectors for a We = 1.2, i.e., the critical value. In 17b the pressure
contours and in 17c the pressure profiles are shown at eight equally-spaced sections
along the x-axis in the region occupied by the droplet. The arrow shows the direction
of increasing i. As seen in Figs. 17b and c, there is a jump in the pressure at the
interface location. It is seen from this figure that, although the pressure at each x-
station inside the droplet is practically constant, there is a variation of the pressure
in the droplet in the tangential direction. In fact, the pressure rises somewhat as
one goes from the top of the droplet toward the side. Although this rise in pressure
is not as high as that on the outer phase as can be clearly seen in Fig. 17c, this may
lead to the enhanced stability in the present case when compared to a bubble,
where the pressure inside is a contant and is solely hydrostatic. Note that in the
interior of the droplet the pressure along the interface rises from the value of about
1.7 to 1.95 (6p = 0.25), while outside the droplet it decreases from —0.8 to about
—2.3 (6p = —1.5). Therefore, the tangential increment of the pressure inside the
droplet is nonnegligible compared to that outside. In Fig. 17d we present the
u-velocity profiles at the same sections as the p-profiles in 17c. As can be seen large
velocity gradients exist in the interior of the droplet due to the strongly recirculating
flow present there. However, the viscous stresses in the droplet, in relation to that
outside, may not significantly influence the droplet stability via Eq. (12) in view of
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FIG. 17. Flowfield characteristics for the case of droplet in extensional flow at Re = 10, We = 1.2,
B = 0.02, A = 0.02. (a) Velocity vectors in the region containing the droplet. (b) Pressure contours in
the same region. (c) Pressure profiles at eight different sections along the x-axis starting from i = 4 to
i = 95 (droplet extends from i = 1 to i = 98). Arrow indicates increasing i. (d) u-velocity profiles at
the same stations as in (c).

the inertia-dominated flow and due to the viscosity inside the droplet being 0.02
times the outer viscosity. It is not straightforward to quantify the individual contribu-
tions of the viscous stresses and the pressure terms in the balance expression given
by Eq. (12) due to the nonlinearity of the flowfield. At the present time, based on
the flow quantities displayed in these figures, it is proposed that the discrepancy in
the We,, value is due to the fact that even for the fairly large density and viscosity
jumps considered here, the dynamics internal to the droplet is nonnegligible. Further
investigation of these aspects is required and is in progress. Suffice it to say that,
as pointed out by Ryskin and Leal [36], the results from studies of the behavior of
bubbles do not carry over directly to inviscid droplets, except at negligible Reynolds
numbers; for the imposed flow at small Reynolds numbers, the pressure inside the
bubble and inviscid droplet are constant, since the dynamic contribution to pressure
does not exist.

3.2.3. Deformation of Droplets in Constricted Tubes

In the above sections we have demonstrated the ability of the algorithm to (1)
handle complex flows in the arbitrary domains represented on a Cartesian grid, (2)
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FIG. 18. Flow of a droplet through a constricted tube for the case of Re = 0.0, Ca = 0.1, 8 = 1,
A = 0.01, a = 0.9. (a) The interface shapes shown at nondimensional times of 0.0, 0.25, 0.5, 0.75, 1.0,
1.25, 1.5, 1.75, 2.0. (b), (c), and (d) Velocity vectors for the times 0.25, 1.25, and 1.5, respectively.

to accurately obtain the dynamics of interfaces under the balance of inertia, viscous,
and capillary forces. In this section we tie these aspects together in studying the
deformation of droplets in viscosity and inertia dominated flows through a con-
stricted tube. The interaction of droplets with the geometry in which they are
constrained to traverse has received some attention from experimental (Olbricht
and Kung [37], Olbricht and Leal [38]) and numerical viewpoints (Tsai and Miksis
[39], Manga [40, 41]). Since the major focus has been on the behavior of multiphase
flow through porous media with applications in oil recovery, such flows have been
restricted to the creeping flow regime. The boundary integral technique was applied
to simulate such a problem by Tsai and Miksis [39]. In recent work, Manga [40,
41] applied the same technique to study the behavior of droplets in geometries
such as a driven cavity and bifurcating channel, again restricted to Stokes flow. To
our knowledge, numerical work on the behavior of droplets in fixed geometries
with significant inertia effects has been restricted to the study of droplets in straight
capillaries (Lee et al. [42]). While the boundary integral technique is unable to
handle flows with convection, purely Eulerian methods have to contend with limita-
tions imposed by the Cartesian grid on which they are based. The present algorithm
does not suffer from these limitations and thus will be employed below to investigate
the flow of droplets in a constricted tube at nonvanishing Reynolds numbers.

In Fig. 18, we show the results of the simulation of droplet motion through a
constricted tube at small Reynolds number. For this case, we have employed the
same conditions as one of the cases in Tsai and Miksis [39]. The constriction in
the tube is a sine wave with amplitude 0.6 R and wavelength 2.0 units, where R is
the radius of the tube. For this case Ca = 0.1, the density ratio 8 = 9,/¢, = 1, the
viscosity ratio A = u;/u, = 0.01 and the ratio of the undeformed droplet radius to
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FIG. 19. Entry of a droplet into a constricted tube for Re = 50, Ca = 0.1, 3 =1, A = 001, a =
0.9. (a) droplet shapes at t = 0, 0.25, 0.625, 0.875, 1.0, and 1.12. (b)—(f) Velocity vectors at t = 0.25,
0.625, 0.875, 1.0, and 1.12, respectively.

the tube radius, a = 0.9. As in the case of Tsai and Miksis [39], the circular droplet
is placed initially such that its center is at x = 4.0. The initial shape of the droplet
is shown by the dotted lines in Fig. 18a. The evolution of the droplet is shown at
equal intervals (6t = 0.25) of time. The interface shapes at these instants agree
remarkably well with the results of Tsai and Miksis [39] using the boundary integral
technique. As can be seen, the droplet deforms essentially in conformity with the
shape of the constriction for this case. In Figs. 18b to d we show the velocity vectors
for this case at instants before, during, and after passage of the droplet through
the constriction. The effect of capillarity can be seen in these figures from the
turning of the velocity vectors in the region where the flowfield is not strong, such
as at the regions close to the wall. Also to be noticed is that at the entry to the
constriction the front of the bubble is sharpened and at the exit the rear is flattened
by the acceleration of the flow at the constriction. This example serves to illustrate
a fairly simple configuration that can be handled by the present algorithm for
interaction of multiphase dynamics through complex geometry.

As an additional element in the physics we simulate the flow of the same droplet
in the constricted tube, but under convective flow conditions. In this regime the
boundary integral technique used by Tsai and Miksis [39] cannot be applied due
to the nonlinear field equations. The Reynolds number based on the tube radius
is 50. For the case shown in Fig. 19, Ca = 0.1, 8 = 1, A = 0.01, and a = 0.9. The
response of the droplet in this situation is significantly different. Due to the presence
of the recirculation zone aft of the constriction the picture changes drastically. For
the area ratio and Reynolds number considered, there appears to be an unsteady
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FIG. 20. Entry of a droplet into a constricted tube for Re = 50, Ca = 0.1, 3 =1, A = 0.01, a
0.75. (a) Shapes of the droplet r = 0.0, 0.25, 0.5, 0.625, 0.875, 1.25, 1.375, 1.5. (b)-(g) Velocity vectors
at t = 0.25, 0.5, 0.625, 0.875, 1.25, 1.5, respectively.

motion in the region following the constriction. A region of recirculating flow is
formed and travels downstream of the throat. This region of the flow has a profound
effect on the interface shape. The interface gets stretched into an elongated shape
downstream of the constriction due to the higher flow speeds there on account of
the rapid area change. Since the material boundary is convected with the flow, the
elongated droplet shape is formed. As the droplet develops, however, the shedding
recirculating flow region has an effect on the interface and draws the front end of
the interface into the shape seen in the Fig. 19a. In this case, as the interface
deforms, the rear of the droplet is pushed toward the constriction and flattened.
Ultimately, the droplet collides with the wall, at which point we terminate the
calculations due to uncertainty in the subsequent behavior. One possibility is that the
droplet will eventually pass through the constriction, as the film of liquid squeezed
between the droplet and the wall of the tube may act as a lubricating layer, facilitating
the motion of the interface relative to the wall. This behavior cannot be captured
due to the finite resolution afforded by the grid. Alternatively, the collision with
the wall may result in rupture of the droplet surface leading to breakup. Since the
impending events are somewhat nebulous, we present results only up to the stage
that the collision is detected by the algorithm.

As a contrasting case, we perform the same simulation for a smaller droplet, for
which a = 0.75. All other conditions are identical to the previous case. From Fig.
20, it is seen that the dynamics is very similar to the case of the larger droplet, except
that eventually the droplet passes through the constriction. Since the calculation was
carried further than in the previous case, it is seen that the translating recirculating
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flow structure downstream of the constriction continues to deform the droplet there,
resulting in the flattened structure of the fore end of the droplet. For the given
Ca = 0.1, the inertia effects appear to dominate over the capillary forces as there
is hardly any difference in the behavior of the smaller droplet in comparison to the
larger droplet. Due to the larger surface curvatures of the smaller droplet, in the
case of sufficiently small capillary numbers, it is expected that the droplet size will
have an effect on its interaction with the flowfield. Also, due to the unsteady nature
of the flowfield, the precise shape of the droplet downstream of the throat will
depend on the relative phase of shedding in that region and droplet entry aft of
the throat. Also, from preliminary studies for a lower Reynolds number, where
shedding is absent, the behavior of the droplet is noticed to be significantly different
from that presented here. The facility developed here is being applied to investigate
these issues.

In this work, we have mainly focussed on the numerical aspects of the algorithm
and have elucidated the physics only from the viewpoint of establishing the physical
correctness of the results obtained. In a related work, we have applied the technique
developed here to study the dynamics of encapsulated viscous droplets as a model
for leukocyte dynamics (Kan [43]).

4. CONCLUSIONS

In this paper we have described three types of extensions to the algorithm called
ELAFINT, which may be summarized as follows:

1. A collocated variable approach is adopted. The stability and accuracy of the
algorithm in computing flows of comparable complexity to those handled by the
staggered grid approach was established. The collocated layout considerably simpli-
fies the algorithm.

2. The cut-cell technique is facilitated by the collocated grid layout and is ren-
dered less tedious. While previously the cut-cell technique had to contend with
three types of control volumes, in the present case only one control volume is used.

3. The fluid-fluid interface has been modeled using the immersed boundary
technique. The cut-cell approach was used in previous work on solidification for the
moving boundary calculations. For the fluid—fluid interfaces, however, the method
proved to be sensitive to noise and was difficult to stabilize. This is because the
cut-cell method employs no dissipation, so that the boundary condition application
is exact. In other moving boundary treatments based on a fixed grid, some smearing
is added near the discontinuity. This is the case in the immersed boundary technique
(Unverdi and Tryggvason [9]), the VOF method (Kothe et al. [5]) and the level-
set method (Sussman et al. [6], Sethian [8], Chang et al. [44], Hou et al. [45]). The
choice of the immersed boundary technique was made due to its compatibility with
explicit interface tracking where ambiguity in regard to interface location is avoided.

The performance of the method under the above modifications has been demon-
strated. The applications include:
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(1) Flows in complex two-dimensional geometries under significant convection,
which obviates the need for grid-generation. In this part we have compared results,
where possible, to a boundary-fitted code and shown good comparison.

(2) The results of the deformation and recovery of viscous drops, subjected to
a uniaxial extensional flow, show good agreement with those of Stone and Leal
[31, 34]. Thus, it is established that the viscous—capillary balance is well captured
by the numerical technique.

(3) The deformation of droplets under uniaxial extension flow under convective
conditions has been studied. In contrast with the work by Kang and Leal [2], here
we consider the motion of the fluid inside the droplet. It is interesting to note that
the estimated critical Weber number for the present simulation is somewhat higher
than that predicted by Ryskin and Leal [36] for a bubble with no internal dynamics.
As discussed in Reskin and Leal [36], this discrepancy in predicting critical Weber
numbers is expected. In line with Mashayek and Ashgriz [35], the relaxation oscilla-
tions of the drop under the competition between inertia and capillary forces is ob-
served.

(4) Finally, the various aspects of the algorithm tested above are grouped together
in order to study the behavior of drops in constricted tubes. For low Reynolds
number flows, we show that the results of Tsai and Miksis [39] are reproduced. But
we go beyond this creeping flow regime, and find some interesting behaviors of the
drop in the region downstream of the throat at Re = 50.

Thus, the algorithm presented above has some attractive features in comparison
to existing methods for moving boundary problems. The algorithm is being applied
to study other problems involving interaction of multiphase flows with flow geome-
tries.
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